- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dion, David (2)
-
Menache, Ishai (2)
-
Moscibroda, Thomas (2)
-
Pan, Abhisek (2)
-
Barbalho, Hugo (1)
-
Domingo, David (1)
-
Kannan, Sudarsun (1)
-
Li, Beibin (1)
-
Liu, Kuan (1)
-
Marshall, Luke (1)
-
Mellou, Konstantina (1)
-
Molinaro, Marco (1)
-
Narayanan, Deepak (1)
-
Sajal, Sultan Mahmud (1)
-
Zhou, Shandan (1)
-
Zhu, Timothy (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In virtual machine (VM) allocation systems, caching repetitive and similar VM allocation requests and associated resolution rules is crucial for reducing computational costs and meeting strict latency requirements. While modern allocation systems distribute requests among multiple allocator agents and use caching to improve performance, current schedulers often neglect the cache state and latency considerations when assigning each new request to an agent. Due to the high variance in costs of cache hits and misses and the associated processing overheads of updating the caches, simple load-balancing and cache-aware mechanisms result in high latencies. We introduce Kamino, a high-performance, latencydriven and cache-aware request scheduling system aimed at minimizing end-to-end latencies. Kamino employs a novel scheduling algorithm grounded in theory which uses partial indicators from the cache state to assign each new request to the agent with the lowest estimated latency. Evaluation of Kamino using a high-fidelity simulator on large-scale production workloads shows a 42% reduction in average request latencies. Our deployment of Kamino in the control plane of a large public cloud confirms these improvements, with a 33% decrease in cache miss rates and a 17% reduction in memory usagemore » « lessFree, publicly-accessible full text available July 7, 2026
-
Sajal, Sultan Mahmud; Marshall, Luke; Li, Beibin; Zhou, Shandan; Pan, Abhisek; Mellou, Konstantina; Narayanan, Deepak; Zhu, Timothy; Dion, David; Moscibroda, Thomas; et al (, 17th USENIX Symposium on Operating Systems Design and Implementation)The infinite capacity of cloud computing is an illusion: in reality, cloud providers cannot always have enough capacity of the right type, in the right place, at the right time to meet all demand. Consequently, cloud providers need to implement admission-control policies to ensure accepted capacity requests experience high availability. However, admission control in the public cloud is hard due to dynamic changes in both supply and demand: hardware might become unavailable, and actual VM consumption could vary for a variety of reasons including tenant scale-outs and fulfillment of VM reservations made by customers ahead of time. In this paper, we design and implement Kerveros, a flexible admission-control system that has three desired properties: i) high computational scalability to handle a large inventory, ii) accurate capacity provisioning for high VM availability, and iii) good packing efficiency to optimize resource usage. To achieve this, Kerveros uses novel bookkeeping techniques to quickly estimate the capacity available for incoming VM requests. Our system has been deployed in Microsoft Azure. Results from both simulations and production confirm that Kerveros achieves more than four nines of availability while sustaining request processing latencies of a few milliseconds.more » « less
An official website of the United States government

Full Text Available